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Abstract

Genetic algorithm behavior is described in terms of the construction and evolution
of the sampling distributions over the space of candidate solutions. This novel per-
spective is motivated by analysis indicating that the schema theory is inadequate for
completely and properly explaining genetic algorithm behavior. Based on the proposed
theory, it is argued that the similarities of candidate solutions should be exploited di-
rectly, rather than encoding candidate solutions and then exploiting their similarities.
Proportional selection is characterized as a global search operator, and recombination
is characterized as the search process that exploits similarities. Sequential algorithms
and many deletion methods are also analyzed. It is shown that by properly constrain-
ing the search breadth of recombination operators, convergence of genetic algorithms
to a global optimum can be ensured.

1 Introduction

Genetic algorithms are adaptive systems designed to emulate natural evolution. They were
first proposed by John Holland in 1975 in his seminal work Adaptation in Natural and
Artificial Systems (Holland, 1975). De Jong suggests that genetic algorithms should be
understood from the perspectives of genotypic and phenotypic behavior, as well as their
performance as global optimizers (De Jong, 1993). This paper contributes to this goal by
describing genetic algorithin behavior in terms of the sampling distributions they impose on
the genospace and the phenospace, and how these distributions contribute to or detract from

the optimization process.

=This work was supported by a contract from the NASA Space Engineering Center for System Health
Management Technology at the University of Cincinnati.



While genetic algorithms have been shown to be effective in many problem domains, the
theoretical foundation for describing, explaining, and predicting their behavior is presently
inadequate. As argued in Section 2, the prevailing theory of genetic algorithm behavior, the
schema theory, is not a suitable theory for describing genetic algorithm behavior. Accord-
ingly, the primary objective of this paper is to generalize genetic algorithms and to provide
an adequate basis for their understanding and analysis (Sections 3 & 4). A second objective
of this paper is to explore the issues and variations of genetic algorithms permitted by their
generalization in the context of the proposed explanation of genetic algorithm behavior (Sec-
tion 5). The final objective of this paper is to determine the conditions under which genetic
algorithms can be assured to converge to a global optimum (Section 6). Finally, conclusions

and suggestions for future research are presented (Section 7).

2 Descriptions and Analyses of Genetic Algorithm Be-
havior

In this section, descriptions and analyses of genetic algorithm behavior are considered. Natu-
rally, the most basic description of a genetic algorithmn and the fundamental basis of analysis
is its definition. For the purposes of this paper, the canonical genetic algorithm is defined by
Procedure 1. In step 3 and throughout the paper, the recornbination of parental encodings is
taken to include the effects of both mutation and crossover. Common recombination opera-
tors and fitness scaling techniques are described throughout the literature (general coverage
is provided in (Holland, 1975; Goldberg, 1989a; Davis, 1991)). In subsection 2.1, where the
schema theory is considered, it is assumned that no fitness scaling is used and that the entire

population of chromosomes is replaced each generation.

Procedure 1 The Canonical Genetic Algorithmn

1. Initialize a population of chromosomes (binary strings).
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2. Evaluate each chromosome in the population by applying the objective function to its

corresponding candidate solution.

3. Create new chromosomes by applying a fitness scaling technique to the chromosome
evaluations, choosing parent chromosomes according to their relative fitness, and re-

combining their encodings.
4. Delete members of the population to make room for the new chromosomes.
5. Evaluate each new chromosome as in Step 2, and insert it into the population.

6. If the stopping criterion has been satisfied, then stop and return the chromosome with

the best observed fitness; otherwise continue with Step 3.

While the procedural description is complete and exact, it is not adequate for conveying
a suitable understanding of genetic algorithm behavior. This description is able to explain
phenomena arising from the use of a genetic algorithm only at the lowest level of abstrac-
tion and understanding. Since this description operates at the experimental, practical, or
phenomenal level, it does not constitute a theory. Consequently, the inadequacies of this
description have given rise to the schema theory and other analyses of genetic algorithms,
such as Markov chain analysis.

In the remainder of this section, the suitability of existing analyses of genetic algorithm

behavior are considered on the basis of the following criteria:

1. The theory should be well grounded in the procedural elements and the generating
mechanisms of genetic algorithms. These include the processes of selection, recombi-

nation, fitness evaluation, and population management.
2. The theory should have explanatory and predictive power.

3. The theory should be robust with respect to algorithmic variations.



Furthermore, in consideration of Occam’s razor, the preferred theory is the simplest and
most closely grounded to that which is known (i.e., the procedural elements and generating
mechanisms).

In this paper, an individual string is denoted 4 or A;, where j = 1,2,...,N, and N
is the size of the population A(t) at time ¢t. The objective or fitness function is denoted
f: A= R'>0. A schema, its order, and its defining length, are denoted H, o(H), and
6(H), respectively. A schema’s order is the number of fixed positions or string elements
common to all members of the schema, and its defining length is the distance between the

schema'’s first and last fixed positions.

2.1 The Schema Theory

According to the schema theory, genetic algorithms work in the space of schemata as opposed
to the space of strings. Therefore, it is necessary to understand the effects of reproduction
and the recombination operators on the schemata contained within a population in order
to understand the behavior of genetic algorithms within the context of the schema theory.
When proportional selection is used, the probability of selecting A;,, the jth individual in

the population at time ¢, as a parent is

f(A5) |
= 2 , 1
I)J|t Z f("lt’t) ( )
Ait€A(L)
and, the target sampling rate of a schema H is
f(H,1) 3(H)
E{m(H,t+1)}>m(H t)>—— |1 -p.- —= —o(H)pm]|, 2

where m(H,t) is the number of representatives of H in the population at time t (Grefen-
stette & Baker, 1989), f(H,t) is the average fitness of the representatives of H in the present
population, f(A(t)) is the average fitness of the present population, p. is the crossover prob-
ability, and p,, is the mutation probability. Based on (2), it has been concluded that small,

low-order schemata with above-average performance are allocated exponentially increasing



trials in subsequent generations (Goldberg, 1989a). An important observation in the schema
theory is that each binary string implicitly searches or samples 2¢ schemata. According to
the theory, this implicitly acquired information is then used for trial allocation to schemata
and to generate increasingly better strings. It has been argued that implicit parallelism
leverages the power of genetic algorithms (Goldberg, 1989a), and allows them to avoid the
obstacles of high dimensionality (Holland, 1975). Equation (2) is often referred to as the
Schema Theorem or the Fundamnental Theorem of Genetic Algorithms (Goldberg, 1989a).
The schema theory will now be evaluated according to the suitability criteria established

at the beginning of this section.

1. The allocation of trials to schemata in a manner consistent with the schema theorem
is certainly well grounded to the procedural elements. However, schema information
is not used in the procedure for trial allocation or any other purpose. Therefore, the
use of acquired schema information to guide or affect genetic algorithm behavior has

no tangible basis and is not well grounded (Peck, 1993, §3.2.5).

2. The schema theory has lead to useful, verifiable predictions (e.g., see (Fitzpatrick &
Grefenstette, 1988; Goldberg, Deb & Clark, 1992; Goldberg, Deb & Clark, 1993)).
However, the schema theory is inexact due to the inequality in (2). Furthermore, the
schema theory and the building block hypothesis are unable to explain how genetic
algorithms systematically generate improved candidate solutions, since they depend

on the use of implicitly acquired schema information (Peck, 1993, §3.2.5).

3. The schema theory, as presented in this paper, is not robust with respect to algorithmic
variations (Peck, 1993, §3.2.5). Genetic algorithm variants using fitness scaling, rank-
ing, and/or real (floating point) encodings are difficult, if not impossible, to explain
within the context of the schema theory. The attempts that have been made require a
new interpretation of the schema theory or higher-order abstractions (Whitley, 1989;

Goldberg, 1991a; Goldberg, 1991b). Similar algorithins, such as ewvolution strategies

(1)



and evolutionary programming (Bick & Schwefel, 1993), are beyond the scope of the

schema theory.

It has also been observed that schema-based analysis of genetic algorithm behavior is greatly
complicated by the difficulties in associating properties to schemata (Forrest & Mitchell,
1993; Grefenstette & Baker, 1989; Grefenstette, 1991; Grefenstette, 1993; Peck, 1993; Peck &
Dhawan, 1993). Finally, since genetic algorithms do not use schema information, there is no
basis to conclude that genetic algorithms realize advantages from implicit parallelism (Peck,

1993).

2.2 Alternative Analyses of Genetic Algorithms

While the primary basis of genetic algorithin analysis has been the schema theory, other
types of analysis have been pursued as well. The primary bases of alternative analysis have
been Markov chain and simulated annealing theory. Most of the analyses in the literature
have only sought to address specific issues, have made simplifying assumptions, or have not
been dependent on the distinguishing characteristics of genetic algorithms (De Jong, 1975;
Goldberg & Segrest, 1987; Rabinovich & Wigderson, 1991; Eiben, Aarts & Hee, 1991; Davis
& Principe, 1991).

The theory presented in (Vose & Liepins, 1991a; Nix & Vose, 1992; Vose, 1993a) rep-
resents the most accurate and complete alternative theory of genetic algorithm behavior
in the literature. In (Vose & Liepins, 1991a), Vose and Liepins present a novel, algebraic
formalization and analysis of a simple genetic algorithin. Using Markov chain analysis, with
the state defined Ly the composition of an infinite sized population, the trajectory of the
expected populations is modeled, and the conditions for convergence to the absorbing states
of the transition mapping are derived. In (Nix & Vose, 1992), the formalisi of the Vose and
Liepins model is applied to a simple genetic algorithm with a finite population size. It is
concluded that, as the population size increases, the asymptotic behavior of the steady state

distributions may be characterized in terms of the Vose and Liepins model. In (Vose, 1993a),



the two preceding works are further tied together, and the GA-surface is introduced. The
GA-surface, which is composed of the points corresponding to populations, may be used to
provide a geometric interpretation of genetic search and to explain population trajectories.

The theory contained in (Vose & Liepins, 1991a; Nix & Vose, 1992; Vose, 1993a) will

now be interpreted in the context of the criteria established at the beginning of this section:

1. The construction and operation of the population transition operators is well grounded
in the procedural elements and generating mechanisms of genetic algorithms. In fact,
the representations in (Nix & Vose, 1992) and (Vose & Liepins, 1991a) are exact for

finite and infinite populations, respectively.

2. Since the representations are exact, any phenomena observed of genetic algorithms
will be explainable within their contexts. As an example, observations of punctuated
equilibrium are explainable in the context of the infinite population representation.
Furthermore, many predictions regarding short and long term behavior have been

derived from this analysis.

3. Markov chain representations may be generated for nearly any algorithmic variant.

Derived properties must naturally be proved for each variant.

The above analysis suggests that a suitable theory for genetic algorithm analysis has
been constructed. There is, however, a subtle caveat to this conclusion: the explanatory
power of this work is hampered by lumping genetic algorithm behavior into a population
transition operator. There are many low-level phenomena of genetic algorithms that are not
adequately understood, and a high-level, unitary abstraction such as a population transition
operator may have difficulty explaining them. A level of abstraction operating between

the low-level abstraction of the procedure and the high-level abstraction of the transition

operator is desired.



3 Global Random Search Methods: An Overview

This section reviews the theory of global random search methods. This theory serves as the
basis for an alternative theory of genetic algorithm behavior, which is presented in Section 4.
The presentation throughout this section primarily summarizes and clarifies the analysis and
results presented by Zhigljavsky (Zhigljavsky, 1991). A more thorough summary of these
results is presented in (Peck, 1993).

This section begins with an introduction to global search methods. This is followed by
a presentation of basic global random search methods. Finally, generational methods and

their convergence properties are examined.

3.1 Introduction and Notation

In the typical global optimization problem, it is desired to optimize an objective function,
which may be a mathematical expression or the output of an algorithm, process, experiment,
or system. Let X denote a set referred to as the feasible region and f : & — R! be the
objective function. In the global minimization problem, it is desired to approximate either

the value

f* = inf f(x), (3)

T€EAX

the p()illt Tzt e X at which the minimal value f’ is attained,
' = arg min A 4
I g TEX f( )’ ( )

or both. The global minimizer, x*, is not generally unique.
Approximating f* and a point z* = argmin f is usually interpreted as finding a point in

either the set

A@d) = {z € X |f(z) — f(=")] £ 8}, (5)

or the set

B(e) = B(x*,e,p) = {z € X : p(z,2") <€}, (6)



where p is the given metric on X, §, and ¢ determine the accuracy of the approximation with
respect to the function and argument values (Zhigljavsky, 1991, pg. 2).
In the global maximization problem, alternatively, the objective is to approximate either

the value

M = sup f(z), (7)

zeX

the global maximizer, which will also be denoted 2*, where
r* = argmax f(x), (8)
zeX

or both. The meaning of z* will be understood through context. It should also be noted that
by substituting — f for f, the maximization problem may be converted into a minimization
problem, and vice versa. To avoid redundancy, only the minimization problem will be
addressed for the remainder of this and the next subsection.

Generally, a global minimization method is a procedure for constructing a sequence {z+}
of points in X that converges to a point at which the global minimizer, f*, is attained
or approximated (Zhigljavsky, 1991, pg. 1). The nature of convergence depends on the
optimization method. For example, convergence may be of the values of f(zi) to f* or of
the sequence {z;} to a probability measure concentrated at z*. This procedure may use a
priori information about X or f, such as values of f, it derivatives, or the presence and
nature of random noise.

The complexity of the optimization problem is dependent on the properties of X and f
Furthermore, there exists a duality between the corresponding properties (Zhigljavsky, 1991,
pg. 2). Specifically, if X is complex but f is simple, then the optimization problem may be
reformulated such that X is siimple and f is complex, and vice versa.

As stated above, the nature of X effects the complexity of the optimization problem and
should be considered in the selection of the optimization technique. In general, unlike local
optimization, global optimization cannot be done if X is not bounded. Some techniques

require that X possess certain properties (e.g., that X be closed, compact, connected, etc.).



Other important considerations include the choice of a metric on &, techniques for reducing
the complexities associated with problem constraints, and the dimension n of X when X C
R" (Zhigljavsky, 1991, pg. 3)

The optimization method is typically selected, in part, based on the functional class, F,
of f, which is determined by prior knowledge of f. The chosen functional class corresponds
to a model of f. The wider the functional class F is, the wider the class of allowable problems

is, and the less efficient the algorithms are (Zhigljavsky, 1991, pg. 3).

3.2 Basic Global Random Search Methods

Global random search methods may be classified as passive or adaptive. Passive methods,
such as uniform random sampling (pure random search), proceed without exploiting infor-
mation learned about f on X. Consequently, these methods are typically quite simple, but
they are also quite inefficient. Adaptive methods, conversely, use acquired and a priori infor-
mation to improve their efficiency. For a brief survey of adaptive methods, see (Zhigljavsky,

1991, pg. 82).
3.2.1 Formalization of Global Random Search Methods

The following procedure represents a generalization and formalization of global random
search methods. It is intended to serve as the basis of comparison and discussion of the

various methods considered in this paper.

Procedure 2 Formal Scheme of Global Random Search (Zhigljavsky, 1991, Algorithm 3.1.5,

pg. 85)
1. Set k = 1, choose a probability distribution P, on &

2. Sample N times the distribution Py to obtain the points

(k) (k)
.l‘l ,‘..’:I’Nk.

At each of these points, evaluate f, possibly with random noise.
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3. Using a fixed, algorithm-dependent rule, construct the probability distribution Py

on X.

4. If the stopping criterion is satisfied, then stop; otherwise, set k = k + 1 and continue

with Step 2.

This procedure illustrates that any global random search method is iterative. Furthermore,
at each iteration a suitably constructed distribution is sampled (Zhigljavsky, 1991, pg. 85).
In Markovian methods, Ny =1 for all k.

The distributions {Pi4;} determine how a priori information and the information ac-
quired during the search process is derived and exploited by the search algorithm. Without

loss of generality, the distributions may be written in the form
Puni(d) = [ Ru(dz)Qu(z, de), (9)

where Rj is a probability distribution on X and Qk(z,.) is a Markovian transition prob-
ability (Zhigljavsky, 1991, pg. 85). The transition probability, Q.(z,.), is a measurable,
nonnegative function with respect to the first argument and a probability measure with re-
spect to the second. Sampling this distribution is performed by sampling Ry (dz) to obtain z,
then sampling Qi (z, dz) to obtain z, the desired sample. As shown below, R; and Q(z,.),
serve two distinct roles in the search strategy.

The distribution R, comprises the global aspects of the search strategy. Accordingly,
R, is constructed using globally derived information about f, and a point from all of X is
chosen when sampling Ri. The method for constructing Ry largely determines the general
structure of the algorithm, and it is the typical basis for algorithm classification. Common
classes of algorithms include Markovian, generational, and branch and bound.

The distribution Qi(z,.) comprises the local aspects of the search strategy. When sam-
pling Qi (z,.), a point in the neighborhood of z is selected. The term neighborhood should be

interpreted to mean “with large probability near enough (Zhigljavsky, 1991, pg. 86).” The

11



nature of Qx(z,.) largely determines the tradeoff between the accuracy of the final result
and the efficiency of the search. A simple choice of Qi(z,.) is

or(z — 2)dz

, (10)
/X or(y — =)dy

Qi(z,dx) =

where ¢y is a chosen distribution density in ®". The denominator of (10) is a normalization
constant. A random realization z; in X from the distribution in (10) may be obtained by
repeatedly sampling ¢, to obtain a realization & until z +§x € X, then setting z; = z + &.
The distribution described above is the method of choice when random noise is present in
the evaluations of f (Zhigljavsky, 1991, pg. 86). It is also useful as a component of other
distributions.

When f is evaluated without noise, the following distributions for Qi (z,.) are often

preferred:

Q(z, 4) = /X lgeas@< sz Te(z, dx) + 14(2) /,( Lif(2)<f() Tk (2, dx), (11)

where Tk(z, dz) is a Markovian transition probability of the form expressed in (10) and 14

is the indicator of set A:

1 ifzre A
lA(.’L’) =1[IGA]={ 0 ifzd A (12)

The first integral represents the probability of sampling a point = € A for which f(z) £ f(z).
The second integral, which only contributes to the sum if z € 4, is the probability of sampling
a point 2 € X for which f(z) > f(z). A realization z; from (11) may be obtained by sampling

the distribution Ti(z,.) to get & and setting

v = { & if f(&) < f(2)

z otherwise.

Other methods for constructing Qi(z,.) exist. In fact, it is not necessary to know the
analytical form of Qi(z,.), it is only necessary that a method for sampling, such as an
algorithm, exists (Zhigljavsky, 1991, pg. 87). Furthermore, Qi(z,.) may be constructed

using a prior: information or information acquired during the search.

12
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3.2.2 General Convergence Results

In this section, Zhigljavsky’s general results on the convergence of global random search
methods will be presented without proof. For the proofs, the interested reader should refer
to (Zhigljavsky, 1991, §3.2). Without loss of generality, it will be assumed that N =1 for
all k = 1,2, ... such that a separate distribution Py is constructed for each sampled point,

T = .’Egk).

Theorem 1 Let f be continuous in the vicinity of a global minimizer x* of f, and assume
that

i Qe = 0 (13)
k=1

for any z € X and € > 0 where

g = qe(x*,e) = yraiinf Pu(B(e)),  Zi-r = {z1,..., Te-1},

—kl

and vraiinf 7 is the essential infimumn of a random variable 7):
vraiinfn = sup {a : Pr{n > a} = 1}.

Then for any & > 0 the sequence of randomn vectors x; generated by Procedure 2 with Ny =1

for k =1,2,... falls infinitely often into the set A(J) with probability one.

Theorem 1 makes use of the probabilities, for each iteration, of falling into an arbitrarily
small set around a global optimizer. It shows that if the sum of these probabilities is
unbounded, then infinitely many evaluations of f will be arbitrarily close to the global
optimum. This theorem applies even when f is evaluated with random noise. Since the
location of any global optimizer is typically not known a priors, it is sufficient instead to
require that Theorem 1 apply to every z € X, in addition to sets around global optimizers.

This stricter, yet simpler, requirement may be expressed:

ig raiinf P.(B(z,¢)) = oo, (14)

13



foralle >0,z € X.
There are many ways of selecting probability distributions P such that (14) is satisfied.

A common approach is to select the probability distributions Py according to
P, = o Py + (1 — y.)Gy,, (15)

where 0 < a < 1, Py is the uniform distribution on X, and Gy is an arbitrary distribution
on X. A realization, zx, from (15) may be obtained by sampling Px with probability a4 and

Gy with probability 1 — «. To satisfy (14), it is sufficient to require

oo
z (¢, = 0Q.
k=1

3.3 Methods of Generations

Generational methods, also called methods of generations in the literature, sequentially sam-
ple probability distributions that are asymptotically concentrated in the vicinity of a global
optimizer multiple times. Each of these multiple samplings is referred to as a generation.
These methods, which were first proposed in the late 1960’s, are based upon the three fol-

lowing heuristics (Zhigljavsky, 1991, pg. 186):

i. New samples of f should most often be obtained in the vicinity of previous,

high-performance samples,

ii. The number of new samples in the vicinity of a previous sample must depend on

the observed value of f at that sample,

iii. The breadth of the sampling distribution around the previous samplings should

decrease as the global optimizer is approached.

Generational methods have many desirable properties. In exchange for their inefficiency
at solving easy global optimization problems, they are suitable for a wide range of prob-

lem domains. In particular, they may be applied to very complex problems and they are

14



applicable when noise is present. Finally, as shown in Subsection 3.3.2, they have provable

convergence properties.
In this section, it will be assumed that the feasible region, X is a compact metric space of

an arbitrary type. Furthermore, it will be assumed that the maximization problem is being

considered.
3.3.1 Presentation of Generational Methods

The following procedure satisfies the three heuristics. It is based on the supposition that
the result of evaluating f at a sample point = € X and iteration k is a nonnegative random
variable yx(z) = f(z) + & (), where &(z) is also a random variable. B is the o-algebra of

the Borel subsets of X.
Procedure 3 Generalized Method of Generations Algorithm with Randomization

1. Choose a distribution P, on (X, B) and set k = 1.

2. Sample N, times the distribution P, to obtain the points .1:(11), . ,z%:.

3. Evaluate the random variables y; (a:gk)) at the points .7;§k), where y(z) = fi(z)+€(z) >

0 with probability one, and f; is an auxiliary nonnegative function constructed using

the observed values of f at the points .7:?) forj=1,...,Ny,i=1,...,k. If

& ()
> () =0,
=1

then repeat the sampling by returning to Step 2.

4. Construct the next distribution according to

N
Piji(dz) = i1)§k)Qk (mﬁk)’dg") 18)
j=1
where (k)
. e (5
O _\_(L‘_(L)_ (17)
> (.’L‘Sk)) :
1=1



5. If the stopping criterion is satisfied, then stop; otherwise, substitute k +1 for k and go

to Step 2.

The distribution Py, in (16) is sampled using superposition: first the discrete distribu-

tion ® ®)
.'l:l ,...,:I.‘Nk
& = (18)
k k
)

is sampled, then the distribution Qk(:z:gk), .} is sampled for each realization xgk) (Zhigljavsky,
1991, pg. 188). It will be assumed in the theoretical analysis of Procedure 3 that (16) will
be sampled in this manner. In practice, however, variance reduction techniques are typically
applied to the sampling procedure (Zhigljavsky, 1991, pp. 188-189). These techniques ensure
that some of the best points are sammpled with probability one.

In Procedure 3, auxiliary, nonnegative functions, fi, are used to construct Pyy. These
functions should reflect the properties of f. For example, fi should, on the average, be
greater where f is great and smaller where f is small. The choice of fi can greatly affect
the quality of the resulting algorithm. Zhigljavsky suggests that the construction of these
functions should done with a technique for extracting and using information about the
objective function during the search or be based upon some technique of objective function
estimation (Zhigljavsky, 1991, pg. 189).

Procedure 3 may be terminated when a prescribed number of iterations have been ex-
ecuted or according to some other criterion. Zhigljavsky suggests termination when the
desired accuracy has been obtained. This may be determined using the methods for esti-
mating M described in (Zhigljavsky, 1991, Ch. 4).

There are also sequential variants of Procedure 3 (Zhigljavsky, 1991, §5.4). The distin-
guishing characteristics of these algorithms are that the sampling distributions Py 1 (dz) may
be constructed using points from all previous iterations, and, except for the first iteration,

only one sample is obtained per iteration.

16



3.3.2 Convergence Properties

In this subsection, the convergence properties of the global random search methods described
by Procedure 3 will be considered. To prove that the sampling distributions of methods of
generations weakly converge to the probability measure concentrated at a global optimum,
Zhigljavsky places key requirements upon the local sampling components, Qx, and the global
sampling components, Ri. Of these requirements, two are placed on the local sampling

components:

1. The breadth of the distributions Q; must be reduced as the algorithm proceeds such

that the sequence weakly converges to a probability measure concentrated at the point

where it is located.

2. The distributions Q; must somehow be constrained so that their expansive nature
cannot overcome the convergence caused by the global sampling components, Rx. A
fortiors, these distributions must be designed to prevent diffusion away from global
optima in the absence of selective convergence; otherwise, additional assumptions about

the objective function, f, would be required.

Without the first requirement it would not be possible to prove convergence of the sampling
distributions to a probability measure concentrated at a global optimum or any other point.
Zhigljavsky satisfies the second requirement in two ways. In Corollary 3 below, a form of
local elitism is used to prevent dispersion of the sampling distribution away from global
optima. In Corollary 4 below, the search breadth of the distributions @ is required to
be finite, and the breadth of these distributions are required to decrease rapidly enough so
that the search range becomes bounded. Finally, the distributions R are required to be in
the form of proportional selection, (17) or (1). Heuristically, the sampling distributions of

methods of generations converge to the global sampling distributions

FE() pda)
J fH()ildz)
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due to the requirements placed on the local sampling distributions Q. Furthermore, as

shown in Lemma 2, these distributions converge to global optima.

Auxiliary Statements Below, two auxiliary lemmas of considerable importance and two
associated corollaries are presented. Appendix B presents the assumptions upon which these

results are based. The proofs for these results are presented in (Zhigljavsky, 1991, §5.2.2).

Lemma 1 If the assumptions (a), (b), (c), (¢), (f), (9), and (s) are satisfied, then

1. the random variables with the distribution Py(dxy, ..., dxy) are symmetrically depen-
dent;
2. the marginal distributions Py (du) = Py(da, X, ..., X) are representable as
[ Bn(d2)1(:)Q(z d=)

Pu(dz) = - + Apn(dz), (19)
| Bwld2) ()

where RN(d::) = Ry(dz, X,...,X); and

3. the signed measures Ay converge to zero in wverigtion for N — oo wnth the rate

N-Y2 je. var(Ay) = O(N~Y%), N = oco.

By substituting fe, N, Newr, P(k, Ni—y;.), P(k+ 1, Ni;.), P(k + 1, Ny;dz) = P(k +
1, Ny;dz, X, ..., X), and A(k, N, .) for f, N, M, Rn(.), Pm(.), Py (dz), and Ay(.), respec-
tively, and applying Lemma 1, Zhigljavsky obtains the following assertion.

Corollary 1 Let (a), (b), (c), and (¢) be mnet. Then for any k =1,2,... and Ny = 1,2,...

the following equality holds for the unconditional distribution of randomn elements xg-k) :

/ P(k, Ni_y; dz) fu(2) R(k, Ny, z; dx)
/ P(k, Ne—y; d2) fu(2)

P(k+1, Ny dz) = (20)

where

R(k, Ny, z; dz) = Qu(z, dx) + Ak, Ni; dx),
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and the signed measures A(k, Ni;.) converge in variation to zero for N — oo with the rate

of order N,:l/2 forany k=1,2,....
This leads to the next corollary.

Corollary 2 Let (a), (b), (c), and () be satisfied. Then for any k = 1,2,... the sequence
of distributions P(k + 1, Ni;.) converges in variation for Ny — oo to the limit distributions
P(.) and

| Puld2) fu(2)Qu(z, d)

(21)
[ Pud)iu(2)

Piyi(dz) =

Loosely speaking, Lemma 1 and Corollaries 1 and 2 above concern the distributions
constructed by generational methods. The following lemma concerns the distributions con-
structed by (17) alone. Appendix A provides a definition and three alternative characteri-

zations of weak convergence.

Lemma 2 Let (c), (d), (h), (i), and (j) be satisfied. Then the sequence of distributions

Piyi(dn) = _ﬂi(')_’_‘(.(y_)- (22)
[ £ @)utdz)

weakly converges to £*(dx) = €z-(dx) for m — oc.

Convergence Properties The sufficient conditions for the weak convergence of the dis-
tribution sequences (20) and (21) to £*(dx) for k — oo will now be presented. The proofs

for these results are presented in (Zhigljavsky, 1991, 5.2.3).

Theorem 2 Let the conditions (c), (d), (¢), (h), (i), and (5) be satisfied as well as (k) and
(m) or (1) and (n). Then the distribution sequence determined through (21) or, respectively,

through (20) weakly converges to €*(dx) for k — oo.

With the exception of conditions (in) and (n), all of the required conditions for Theorem 2

are natural and reasonable. As mentioned previously, it is of great interest to determine
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the sufficient conditions for the satisfaction of (in) and (n). In (Zhigljavsky, 1991, §5.2.3),
Zhigljavsky formulates the sufficient conditions for distribution convergence to £*(dz) for the
two theoretically most important ways of choosing the transition probabilities Qx(z, dz), as

follows.

Corollary 3 Let the conditions (¢), (d), (), (h), (i), (3), (0), (p), (9), and (t) be satisfied.
Furthermore, let (k) be satisfied for the transition probabilities Ti(z,dz) of (59). Then the

sequence of distributions determined by (21) weakly converges to £*(dx) for k — oo.

Corollary 4 Let the conditions (e), (h), (i), (i), (¢), (v), end (t) be satisfied. Then the

sequence of distributions determined by (21) weakly converges to €*(dx) for k — oo.

Zhigljavsky asserts that, like Theorem 2, Corollaries 3 and 4 may be reformulated to
demonstrate the convergence of (20) to £*(dx). Corollary 4, the more non-trivial of the two,

was then reformulated and proved.

Corollary 5 Let the conditions formulated in Corollaries 1 and 4 be satisfied. Then there
ezists a sequence of natural numbers Ny (N, — oo for k — o) such that the sequence of

distributions P(k + 1, Ni; dx) determined by (20) weakly converges to £*(dz) for k — oo.

4 Genetic Algorithms as Global Random Search Meth-
ods

Genetic algorithms are global random search methods. Accordingly, it is argued that genetic
algorithin behavior is best described by the construction and evolution of the sampling distri-
butions. Furthermore, it is preferred that these sampling distributions be described relative
to the phenospace, rather than the genospace. However, genotypic sampling distributions
are equally useful when the distribution of candidate solutions across the genospace is un-
derstood or known. Matching the simplicity of the genetic algorithm itself, this perspective

and the theory associated with it is reinarkably simple. Furthermore, it will be shown that
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this is a suitable theory for genetic algorithin behavior according to the criteria established
in Section 2.

The genotypic sampling distributions of genetic algorithms have been described previ-
ously in the literature. The sampling distributions arising from proportional selection and
mutation are presented in (Davis & Principe, 1991). Those resulting from proportional se-
lection and one-point crossover are described in (Bridges & Goldberg, 1987, Whitley, 1993).
Statistical measures derived from recombination operators and their relationship to the ob-
jective function are presented in (Manderick, de Weger & Spiessens, 1991). The sampling
distributions constructed using proportional selection, one-point crossover, and mutation are
presented in (Vose & Liepins, 1991a). Recently, Vose independently recognized that the inter-
pretation of the population transition operators as sampling distributions is a unifying theme
that nicely connects his finite and infinite population models of genetic algorithms (Vose,
1993b).

This section applies the formalism and insights of the theory of global random search
methods in Section 3 to genetic algorithms. First, the genetic algorithm is reformulated and
generalized in terms of phenotypic search. Genetic algorithm behavior is then described in
terms of three heuristics related to the procedural elements of genetic algorithms. Finally,
the suitability of sampling distribution theory for describing genetic algorithm behavior is

considered in the context of the criteria established in Section 2.

4.1 Reformulating the Genetic Algorithm

The canonical genetic algorithm searches the discrete space of attainable strings A, where
a single string is denoted 4 or A;. In Procedure 4, the canonical genetic algorithm is
expressed in the form of the methods of generations in Subsection 3.3.1. It is assumed that
if the objective function, f: A= R is evaluated with noise at iteration k, then the result

is a nonnegative random variable g(4) = F(A) + & (A), where & (A) is a random variable.
Procedure 4 The canonical genetic algorithn as a generational global random search method.
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1. Choose a distribution P, on A and set k = 1.
2. Sample N; times P, to obtain the strings .-‘l(lk), . A(“

3. Evaluate the random variables ‘,l}k(Ag-k)) at the strings Ag-k), where §:(A) = fi(4) +
&x(A) > 0 with probability one, fi is an auxiliary nonnegative function constructed
using the observed values of f at the strings A;_") for j=1,...,N;,;i =1,...,k, and

f: A— RUis the fitness or objective function. If
L *)
j=1

repeat the sampling by returning to Step 2

4. Construct the next distribution according to

P (4) = Z pr’pg,‘,’ e (40,40, 40, (23)
,‘ "1]”-1
where 0
T- 44."
o = ) (24)

Ne )
4 (49).

1=1

5. If the stopping criterion is satisfied, then stop; otherwise, substitute k +1 for k and go

to Step 2

The construction of the sampling distributions { P41} in (23) is consistent with Lemma
1in (Vose & Liepins, 1991a) and it proceeds in two stages: a global phase and a local phase.
The realizations A; and Aj» are obtained using global information about f contained in
the population and (24). The local phase corresponds to recombination, which encompasses
both crossover and mutation, and is performed with the transition probability Qk(Aj:, Ajny ).
The emphasis on the use of two samples for the construction of the transition probability
distribution is the distinguishing characteristic of genetic algorithms from other global ran-

dom search methods, including evolutionary programming (Fogel & Atmar, 1990; Back &

[\
[3)



Schwefel, 1993) and evolutionary strategies (Bick & Schwefel, 1993; Bick, Hoffmeister &
Schwefel, 1991). It is on the basis of these two saumples and a similarity measure that the
locality of Qk(Ajr, Ajn, ) is typically determined. This is discussed further in Subsection 4.2.
The distribution Pey; in (23) is sampled using superposition: first the discrete distribu-
tion
AP, A

Ep = (25)

k
..o,

is sampled twice, then the distribution Qx (A(, , -1(,. ,.) is sampled for each pair of realiza-
tions Ag-,) and A§,.). The transition probability Qk(A( Al o ,A) describes the probability
of obtaining the realization A given the pair Agf) and Ag-,,) . The distribution P4, in (23)
may also be sampled using a variance reduction technique (for examples, see (Baker, 1987;
Baker, 1989; Zhigljavsky, 1991)). Finally, the distributions {Pg41} in (23) may alternatively

be constructed to generate a pair of samples (Peck, 1993),

Posi(Av, Aw) = Z Z PP Qu (4% , AW, Ay, Aw), (26)

i=1j"=1
where the transition probability Q. (Agf), Ag-,k;), Ai, Aiu) describes the probability of realizing
the pair (Ay, A;v) given the pair (Agf), Agﬁ))

The auxiliary functions fi in Step 3 should reflect the properties of f. That is, they
should be greater when f is greater and smaller when f is smaller. Common choices of
fi include functions for fitness scaling and ranking. These functions may, in general, be
constructed using any subset of the previous samples. Generational genetic algorithms,
however, typically only use ,-1(1k'1) 4% 11).

The genetic algorithm may also be described in terms of the phenospace or feasible space
X. In genetic algorithms, each string or element A of A is an encoding of a candidate
solution z, which is an element of the feasible space X. Due to the mapping M : A— X,
the sampling distribution Qk(Aj/,Aju, .} on A constructed by selection and recombination

also imposes a sampling distribution Q(z’,z",.) on X. In other words, the realization z

obtained from Qu(M(Aj), M(Aj),.) is identical to M(4;), where A; is the realization
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obtained from Qk(AJv, Ajn,.). The genetic algorithm can then be generalized to search the
phenospace, where the sampling distributions {P41} are constructed with respect to X

according to

Peyi(dz) = /x /X Ri(dz)Re(dz")Qu(2, 2", dx), (27)

where Ry, is a probability measure on X and Qu(z', 2", .) is a transition probability such that
it is a measurable function with respect to the first two arguments and a probability measure
with respect to the third. The distributions { P41} are typically sampled using superposition:
first realizations 2’ and z” are obtained by sampling Ry, then Qx(2’, z”, .) is sampled to obtain
z. Finally, the distributions {Pi41} in (27) may alternatively be constructed to generate a
pair of samples (Peck, 1993).

In analogy to (26), the distributions {Piy1} may alternatively be constructed according
to

Pyj1(da’, da”) = /; /1 Rk(dzl)Rk(dz”)Qk(zl, ", de’, dz"), (28)

where. once again, Ry is a probability measure on X and Qi(7,z",d2’,dz") is a transition
) b 1 b b

probability such that it is a measurable function with respect to the first two arguments and
a probability measure with respect to the last two arguments. For the purposes of analysis

and discussion only (27) will be considered further.
To generate distributions consistent with (27), the genetic algorithm may be generalized

in the following form, where B is the g-algebra of the Borel subsets of X

Procedure 5 The generalized genetic algorithm as a generational global random search
method.

1. Choose a distribution Py on (X, B) and set k£ = 1.

2. Sample Nj times Py to obtain the points n:gk), e .'1:5\‘,":.

3. Evaluate the random variables yk(:z:gk)) at the points a:gk), where yk(mgk)) = fk (a:gk)) +

§k(.7:§-k)) > 0 with probability one, fi is an auxiliary nonnegative function constructed
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using the observed values of f at the points 1 ) for j = L N,i=1,...,k, and

f: X — R is the fitness or objective function. If

Ny
e (57) =0,

i=1

repeat the sampling by returning to Step 2

4. Construct the next distribution according to

Pepi(z:) = z z,,,,, Qi) ), (29)
,-lJ”—l
where @)
. 5
o - 2L (a0l
NACHE
i=1

5. If the stopping criterion is satisfied, then stop; otherwise, substitute k + 1 for & and go

to Step 2.

4.2 Genetic Algorithm Behavior

The construction and evolution of the distributions { Py41} provide considerable insights into
the interplay of the procedural elements. This level of abstraction lies between those of the
procedure and the populational transition operators of Markov chain analysis. Furthermore,
it is useful for understanding how genetic algorithms search the feasible space and how they
generate increasingly better candidate solutions. It is also suitable for rigorous mathematical
analysis and derivation of convergence properties.

Genetic algorithins can be described on the basis of the three following heuristics, which

are related to the procedural elements of genetic algorithms:

i. the number of times a previous sample is chosen for constructing a transition

probability, Qx, is dependent on the function evaluation observed at that point,



ii. the sirnilarities between previous samples should be exploited in the construction

of the transition probabilities, and

iii. often enough, the objective or fitness function behaves similarly on similar sam-

ples.

The description of genetic algorithm behavior begins with a randomly generated set of sam-
ples from the search space (the initial population). For each sample, the objective function
value is evaluated. Then pairs of high performance samples are competitively selected from
the set of samples. For each pair of samples, another one or two new samples are randomly
generated that are sirnilar to the high performance samples. Since it is assumed that the
objective function behaves similarly on similar samples, the new samples are also likely to
be of high performance. The search process continues with the evaluation of the objective
function at the new samples. Since the new samples also compete against each other in the
selection process, the set of samples becomes increasingly concentrated in the high perfor-
mance regions of the search space. As the samples become increasingly concentrated, they
become more similar and the breadth of search dynamically decreases. Therefore, unlike
most other global random search methods, genetic algorithms do not require predetermined
schedules for controlling the construction of its sampling distributions.

The word sirnilar is critical in the above description. However, there is no similarity
criterion that applies to all problem domains and search spaces. While not yet properly
investigated for this purpose, the fitness correlation coefficient of an operator may serve as
a useful measure of similarity (Manderick, de Weger & Spiessens, 1991). The similarities
exploited by an algorithm may be either genotypic or phenotypic, depending on the na-
ture of the implementation. In the canonical genetic algorithm, it is the similarities in the
candidate solution encodings that are exploited. Each of the traditional crossover opera-
tors (i.e., one-point, multi-point, uniform, and parameterized uniform crossover) preserves
the portions or bits of the encodings common to both parents in the children. Searching

is performed by exchanging or randomizing the remaining bits in some manner. Since the
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likelihood of altering bits of the candidate solution encoding through the process of mutation
typically decreases exponentially with the number of altered bits, mutation also results in
encodings that are similar to the original encoding. Interestingly, it is in this manner that
the string similarities common to high performance samples pervade later populations. A
more extensive explanation for observations of schema growth that does not appeal to the
schema theory is presented in (Peck, 1993, §5.4).

In addition to considering the satisfaction of the second heuristic, we will now consider
the other heuristics as well. In genetic algorithms, the first heuristic is satisfied by the global
sampling phase, which is described by (24). The third heuristic is problem dependent. As
addressed in Subsection 5.1, it is also dependent on the candidate solution representation.
Furthermore, it has been pointed out that the genetic algorithm will degenerate into a

random search if this heuristic is not satisfied (Rawlins, 1991).

4.3 The Sufficiency of the Theory

The mathematical description of the theory presented in this section is an exact represen-
tation of genetic algorithms based on the procedural elements. Thus, any phenomena of
genetic algorithms will be explainable in its context. The explanatory and predictive capa-
bilities of the theory are drawn upon throughout the remainder of this paper. The theory
is also robust with respect to algorithmic variations. Procedure 5, for example, allows for
fitness scaling, ranking, non-traditional recombination operators, independence of the encod-
ing method, and arbitrary search spaces. Consecuently, this theory is sufficient according to
the criteria established at the beginning of Section 2.

Since both this theory and the theory presented in (Vose & Liepins, 1991a; Nix & Vose,
1992; Vose, 1993a) are exact, they are isomorphic. Since they have different theoretical bases
and levels of abstraction, however, these two analytical perspectives should be complemen-
tary. These theories are distinguished from each other in two ways. The first is a change of

emphasis or interpretation. In (Vose & Liepins, 1991a; Nix & Vose, 1992; Vose, 1993a), the



interpretation of the mathematics is lumped into a transition between populations. In the
present theory, the emphasis is on how the components of the sampling distribution affect
the search. The second distingnishing characteristic is the consideration of the phenotypic

sampling distribution, if possible.

5 Factors Affecting the Sampling Distributions

Based on the conclusions of Section 4.2, understanding the factors affecting the sampling
distributions {Py4,} is particularly important for understanding, applying, and designing
genetic algorithms. In pursuit of this understanding, this section addresses the issues associ-
ated with the encoding of candidate solutions, the construction of the sampling distributions
Ry (i.e., selection), the construction of the distributions Qy (i.e., recombination), and pop-

ulation managerment.

5.1 Candidate Solution Encoding

Genetic algorithms work by exploiting sirnilarities between previous samples and they de-
pend on the objective function behaving similarly on sirniler samples. A crucial design issue,
therefore, is the choice of similarities to exploit. Ideally, these similarities should be chosen
with respect to the nature of the candidate solutions and the problem under consideration.

Typically, genetic algorithms encode candidate solutions and then exploit the similari-
ties in the encodings. As a consequence, the choice of candidate solution encoding has a
tremendous impact on the performance of genetic algorithms. According to the choice of
encoding, a problem may be reduced to the archtypically easy “counting 1's” problem (Vose
& Liepins, 1991b), or genetic search may be rendered no more effective than a pure random
search (Rawlins, 1991).

For greatest benefit, the encoding method should be matched to the candidate solutions
and the problem under consideration such that similar strings will result in similar candidate

solutions. Unfortunately, it is not generally possible to preserve similarities in both A and
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Figure 1: The relationship between the similarities of encodings and the similarities of the
numbers they represent: left) when natural code is used, right) when gray code is used.

X. Typically, genetic algorithin practitioners simply rely upon the fortuitous existence of
exploitable similarities. Since the use of binary encodings increases the number of oppor-
tunities for exploitable similarities, it is not surprising that such encodings are the most
commonly used.

To illustrate the problems of choosing an encoding, the specific problem of encoding an
integer is considered in (Peck, 1993). Both natural code and the gray code used in Genesis
Version 5.0 (Grefenstette, 1990) are analyzed. Ten bit encodings were used to represent
integers in the range [0,1023]. In this analysis, the Hamming distance and the absolute
difference are used as similarity measures for the encodings and integer values, respectively.
As shown in Figure 1, two similar encodings will not necessarily result in similar integers
for either encoding method. In fact, no integer encoding longer than two bits can satisfy
this objective. This is because an integer is adjacent to only two other integers, yet an
integer encoded with £ bits, is a Hamming distance of one from exactly ¢ other encodings.
Figure 1 also suggests why genetic algorithms using these encodings are usually effective.
The region between the 25th and 75th percentiles in each case shows that, in most instances,
increasingly similar encodings result in increasingly similar integers.

The above discussion illustrates that it is very difficult to design an appropriate candidate

solution encoding scheme, even when the candidate solution is as simple as an integer. It is
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also very difficult to envision the distribution of candidate solutions across A. This difficulty,
combined with trying to understand how A is being sampled by selection and recombination,
makes it very difficult to understand genetic algorithin behavior in either the genospace or
the domain of the problem being considered.

The many problems associated with encoding the candidate solutions and designing the
sampling distributions to exploit string encoding similarities may very easily be eliminated by
simply designing the sampling distributions to exploit similarities in the candidate solutions
themselves. There is no theoretical requirement for the use of string encodings and there are

many advantages to their elimination:

1. The problem specific structure of X is typically much better understood than the

distribution of candidate solutions across A.

2. The recombination operators, Q, may be customized to exploit knowledge of the
structure and similarities of the candidate solutions that are pertinent to the problem

under consideration.

3. The behavior of the genetic algorithmn will be better understood since the relationship

of the sampling distributions to the structure of X will be better understood.

4. Only the recombination operators are problem dependent, the remainder of the algo-

rithin (Procedure 5) is unchanged.
5. Mathematical analysis is easier due to the elimination of the mapping M.

Finally, it should be noted that designing genetic algorithms to search the phenospace, X', as
opposed to the genospace, A, is already a common practice (e.g., consider order dependent
problems).

Radcliffe has also considered many of these ideas (Radcliffe, 1991b; Radcliffe, 1991a;

Radcliffe, 1993). Referring to subsets of the search space as equivalence classes or formae,

Radcliffe argues:
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The critical tasks are thus finding formae which characterise solutions in meaning-
ful ways and developing operators which usefully manipulate these formae (Rad-

cliffe, 1991D).

These formae are generalizations of schemata that are not necessarily defined with respect
to string similarities. By considering recombination operators that characterize solutions
in meaningful ways and do not necessarily exploit string similarities, the need for string

encodings is effectively eliminated.

5.2 The R, Class of Distributions: Selection

The distributions Ri in (27) make use of global information obtained about the objective
function f. Furthermore, these distributions are largely responsible for concentrating search
in high performance regions of the search space. Since the realizations obtained by sampling
the distributions Ry, are previously obtained samples of X, these distributions do not generate
new candidate solutions or expand the search domain.

To a great degree, the way of constructing the distributions Ry establishes the general
structure and originality of a global random search method (Zhigljavsky, 1991). In the
canonical genetic algorithm, proportional selection is nsed, as in (1). In practice, auxiliary
functions fj related to the objective function f are typically constructed for the purposes
of fitness scaling or ranking. The distributions Ry are then implemented according to (30).
Many other methods may be used instead of proportional selection (Goldberg & Deb, 1991;
Biick & Hoffmeister, 1991; de la Maza & Tidor, 1993), including the methods used in evolu-
tion strategies (Biick & Schwefel, 1993; Biick, Hoffmeister & Schwefel, 1991) and evolutionary
programming (Fogel & Atmar, 1990; Bick & Schwefel, 1993).

Proportional selection is very simi)le, is suitable for nse in the presence of noise, and it
has nice theoretical properties. Theovem 3 indicates that the the best string in the initial
population eventually dominates the population (Peck, 1993; Peck & Dhawan, 1993). This

theorem simulates the effects of an arbitrarily large population by allowing fractional numbers
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of individuals. Comparing (31) to (22) provides additional insights into genetic algorithm
behavior. These equations are consistent with Equations (7) and (8) of (Goldberg & Deb,

1991).

Theorem 3 The observed average population fitness, f(A(t)), ot time t, and the number of
instances of a particular string A; at time t, m(A,, t), resulting from the use of proportional

selection may be ezpressed:

Z m(4;, 0) fHA)

7 A4
flaw) = S (31)

AjeA

and
Nm(A4;,0)ft(A)
m(A;,t) = t ) 32
Hat) = S0 F(4) .

A;EA

where N denotes the size of the population, and m(4;,0) =0 if A; & A(0).

Proof: The following inductive proof begins with the initial steps. By definition,

Nm(A4;, 0) fO(4:)

Tn(‘4i) 0) Z 'rn,(.-’lj,O)fo(.-‘l]-), (33)
Aj€A
and
FA@) = 5 & mdi05(4), (34
Ai€A
m( Az 0) fH(A)
= &4 : 35
> m(4;,0)/°(4;) (3)
A;€A
since Vt > 0, N = 3 4.c4™(4;, t). Furthermore,
o om(A4;,0)f(A4)
m{A;, 0)f1{A)
F 2 m(A,00 () e
A;EA
Nm(A4;,0) fH{A4)
) 38
> mld;, 0)f1(4;) (3%)
Aj€A
and
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W) = § X mlAa DS, (39)
A€A
Y Nm(A;,0)f(A:i)f(A)
_ _1_A.»eA ’ (40)
N 5 m(4;,0)f1(4;)
AjEA
ZATr),(A,-,O)f2(Ai)
A ' 41
S~ (47,07 (,) )

A;eA

Let us now assume that

3 Nm(A;, 0) FH(A:)
m(A,', k) = Z TII,(AJ-,O)fk(Aj) (42)

AjEA

Z 'm,(A,g,())le(Ai)
FOA(E)) = AiEA . 43
f(A( )) Z 'rn,(AJ-,O)fk(Aj) ( )

AjEA

and

Then
) _om{4i k) f(A)
m(A, k+1) = ——_f_(A(k) , (44)
1

= m,(A,,l.,)f(A,)f(A(k)’
k
W0z
Z m(4;,0) k(_;;j) . Z m(Ai',O)fk+l(Ai'),
Aj€A ATEA
N4z, 0) /(4
. m{d;, 0) /51 (4)]

A;EA

and

FA(k+1)) = -]lv S m( Ay k+1)F(A42), (48)
Ai€A
Z Nrn(A;, 0) F51(A) F(AD
— _1_A.‘EA (49)
N Y m(A;,0) f(4;) ’
AjEA
ST mn(Ai, 0) £ (A)
. A€A
Ym0 (Ay) 0)

AjEA

Since it has been shown that the theorem is satisfied for t = 0,1 and that if the theorem
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Figure 2: Ideal string and population fitness growth curves, based on a clumped initial
population: left) The growth of instances of the strings having the indicated fitness, right)
The growth of the observed average population fituess.
is satisfied at ¢t = k then it is also satisfied at ¢ = k + 1, the process of induction completes
the proof. ]

In (Syswerda, 1991), the effects of proportional selection on the growth of strings are
investigated. Three cases are considered: the ideal (infinite population) case, the finite
population case using the standard ‘roulette wheel’ proportional selection method, and the
finite population case using a selection variance reduction technique, Stochastic Universal
Sampling (SUS) selection method (Baker, 1987). In all three cases, the population fitnesses
are initially clumped at specific values: 10% of the population has a fitness of 10, 10% has a
fitness of 20, and so on, up to a fitness of 100. A number of interesting observations can be
made from the presented results. In the ideal case, the growth curves, which were obtained
using difference equations, are indistinguishable from those obtained using the equations of
Theorem 3. The growth curves derived from Theorem 3 are presented in Figure 2. When
a finite population and standard selection are used, the growth curves are nearly ideal, but
noticeably different. When the variance reduction technique is employed, the growth curves
are indistinguishable from the ideal curves.

In (Peck, 1993), an empirical study is performed to determine whether the discrepancy

between the ideal growth curves and the growth curves using the finite population and stan-
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Figure 3: The average proportion of individuals of different fitnesses, using standard propor-
tional selection, in clumped population distributions of left) 10 individuals, and right) 100
individuals.
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Figure 4: The average proportion of individuals of different fitnesses, using SUS propor-
tional selection, in clumped population distributions of left) 10 individuals, and right) 100
individuals. ‘

dard selection is significant. Populations of 10, 20, 40, and 100 strings were investigated.
Uncertainty in the results was reduced by averaging the curves from 1000 independent ex-
periments. Both standard and SUS proportional selection methods were investigated to
determine the effects of selection noise. Figures 3 and 4 present a portion of the results.
The empirical results indicate that poorer performance should be expected when smaller
populations are used, regardless of the selection method. Analytical proofs or explanations of
this observation are presently unavailable. Using standard proportional selection, extinction

of the best individuals was observed for populations of 10, 20, 40, and 100 individuals



in 40%, 20%, 3%, and 0% of the trials, respectively. Extinction of the best individuals
is not possible using SUS proportional selection. Extinction, therefore, can explain some
of the poorer performance, but not all of it. The poorer performance does seem to be
well correlated with the sampling variance, however. There is higher sampling variance for
the smaller populations and the performance is worse for smaller populations, regardless
of the selection method. Furthermore, the use of the variance reduction technique results
in improved performance. Unfortunately, the relationship, if any, between high sampling

variance and poorer selection performance is presently not understood.

5.3 The Q Class of Distributions: Recombination

The distributions Q,, in (27) typically perform a localized search according to some similarity
measure, and are referred to as recombination operators in the genetic algorithm literature.
The distributions Q. (z',z”,.) are dependent on two realizations, z' and z”, which are likely
to be of high performance since they are obtained through selection. These distributions are
typically designed to exploit similarities hetween these two high performance realizations.
These distributions can also be designed to exploit inferences about the local behavior of
the objective function f based on the two samnples, z' and z”, and their evaluations (Peck,
1993). The dependence of the distributions Qx(z',z”,.) on two samples combined with the
use of selection! can eliminate the need for scheduling the narrowing of local search, which
is required for most adaptive global random search methods (e.g., the simulated annealing
and the methods of generations (Zhigljavsky, 1991)). Since this is typically done in genetic
algorithms, both the distributions Ry and the distributions Qy are typically adapted on the
basis of information obtained during the search.

In Section 4, it is argued that genetic algorithim behavior can best be understood by
understanding the sampling distributions induced on the phenospace. Accordingly, the sam-

pling distributions imposed on R" by the traditional recombination operators will now be

1Recall that selection, or the sampling of the distributions Ry, concentrates the sampling distribution in
the high performance regions observed globally.
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considered with the use of a novel visualization technique. The operators that will be char-
acterized are one-point crossover and uniform crossover. Other traditional recombination
operators are visualized in (Peck, 1993). Due to the independence of the encoded parame-
ters it is sufficient to consider the sampling of one dimension at a time, R'. However, due
to the dualism between encodings and recombination operators (Battle & Vose, 1991; Vose
& Liepins, 1991b), visualizations will be presented of the recombination operators applied
to both natural code and the gray code used in Genesis Version 5.0 (Grefenstette, 1990).
Finally, as is typically the case, the real values will actually be encoded as integers and used
as a real value by applying an affine transformation.

The objective of this visualization technique is to communicate where the realizations of
the recombination operators, Qi(z', 2, .), are likely to be obtained relative to the location of
the parents, z’ and z”. To fulfill this objective, all integers are encoded using six bits, and it is
assumed that all pairs of parents are equally likely. For a particular pair of parent values, it is
possible to compute the likelihood of realizing particular values given the recombination op-
erator and the encoding scheme. A suitable visualization can be constructed by accumulating
the marginal sampling distributions for sets of parent values separated by a given distance.
To properly accumulate these distributions, they are translated by the amount required to
position the mean of the two parents on the center column of the image?. Each marginal
distribution is then used to construct a single row of the visualization, where the brightest
pixel values correspond to the most likely realizations. The top row of the resulting image
corresponds to the marginal sampling distribution of parents separated by a distance of zero
(they are the same). Successive rows correspond to the marginal distributions of increas-
ingly separated parents. Finally, the bottom row corresponds to the marginal distribution
of parents separated by a distance of 63. As shown in (Peck, 1993), it is also insightful to

visualize the feasible realizations by setting all locations with a positive probability of being

2The image requires 4 minimum of 127 columns because when both parents are 0, the marginal sampling
distribution occupies colmmns 63-126, and when they are both 63, the marginal sampling distribution occu-
pies columns 0-63. For all other combinations of pareuts, the marginal distributions fall into this range of
columns.
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realized to white, and all other locations to black.

Figure 5 shows the sampling distribution resulting from the application of one-point
and uniform crossover to integers encoded with G-bit natural code. Figure 6 presents the
visualizations resulting from the use of 6-bit gray code. These visualizations indicate that
the distributions generated by one-point crossover are more concentrated in the vicinity of
the parents than those resulting from uniform crossover. The salient characteristic of the
sampling distributions resulting from the use of the gray code representation is that the
breadth of search decreases as the distance between the parents decreases.

In (Peck, 1993), one-point, two-point, uniform, and parameterized uniform crossover
operators using both natural and gray encodings are applied to De Jong’s test suite (De Jong,
1975), and their effectiveness is compared on the basis of five performance measures. It is
found that those operators that tend to sample most often near the parents result in superior
performance. Therefore, it may be concluded that concentrating and constraining search
in the vicinity of the parents results in superior performance. This conclusion is further
bolstered by the recommended settings of the recombination control parameters, such as
crossover and mutation probabilities, which serve to further localize search. Finally, this
conclusion has been favorably exploited in the design of a family of recombination operators
for use when X C R"* (Peck, 1993). An example of these operators and its visualization are

presented in (52) and Figure 9, respectively.

5.4 Management of the Population

The population is the basis for the construction of the sampling distributions. The infor-
mation obtained by the genetic algorithm up to a certain iteration is entirely contained in
the distribution of the population’s samples and in the evaluations of the objective function
obtained at those samples. In fact, this information completely determines the distributions
R,.. For this reason, it is arguable that the management of the population should have been

discussed in Subsection 5.2. However, for the sake of clarity, the many issues associated with
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Figure 5: Sampling distributions of one-point and uniform crossover search in the real domain
with natural code representations: top) one-point crossover, bottom) uniform crossover.
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Figure 6: Sampling distributions of one-point and uniform crossover search in the real domain
with gray code representations: top) one-point crossover, bottom) uniform crossover.
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the management of the population are considered here separately. The issues considered are
those associated with the composition and creation of the population, the updating of the

population, and the deletion of members from the population.
5.4.1 Population Issues

Of the two population issues considered in this subsection, population sizing and initializa-
tion, population sizing is certainly the most thoroughly investigated in the literature. The
population provides an estimate of the objective function behavior. Obviously, a larger popu-
lation results in a more dense sampling of the objective function and a better estimate. If the
objective is to ensure with a certain degree of confidence that the algorithm will adequately
search the objective function, then the complexity of the phenospace and the characteristics
of the objective function should be considered in the sizing of the population. If the function
varies significantly in small regions, then a larger population will be necessary to provide an
effective estimate, whereas a slowly varying function may be adequately estimated with very
few samples. Similarly, a highly complex phenospace will require more samples, than a very
simple one. The drawback to the use of larger populations is that the rate of improvement
or convergence is slower when measured by the number of evaluations performed.

The population sizing problem has been considered in the literature both empirically (De Jong,
1975; Grefenstette, 1986; Schaffer, Caruana, Eshelman & Das, 1989; Jog, Suh & Gucht, 1989)
and analytically (Goldberg, 1989h; Reeves, 1993; Goldberg & Rudnick, 1988; Goldberg, Deb
& Clark, 1992; Goldberg, Deb & Clark, 1993). The empirical studies have suggested pop-
ulations ranging from 20-200, depending on the optimality criterion. Of the analytical
approaches, information about the objective function is considered only in (Goldberg &
Rudnick, 1988; Goldberg, Deb & Clark, 1992; Goldberg, Deb & Clark, 1993), albeit in the
form of collateral noise. The favorable empirical results obtained with these methods might
be explainable in terms of the objective function, the properties of the phenospace, and the
relationship between the schemata and the phenospace. If so, they may provide the basis for

population sizing methods that are hased move directly on the first two properties. Such a
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method would also be applicable when binary encodings of the candidate solutions are not
used.

A population management issue that has received little attention in the literature is
improving population initialization. This literature is reviewed in (Peck, 1993), and a novel
initialization technique based on stratified sampling is proposed. This method is motivated
by the facts that reducing randomness can increase efficiency, and stratified sampling has
been shown to dominate independent sampling (Zhigljavsky, 1991, §4.4). Stratified sampling
involves dividing the sampling region, X, into rn subregions of equal volume. Then, if
N = mf samples are desired, each of the m subregions is randomly sampled ¢ times, using
a uniform distribution. The effects of stratified initialization on genetic algorithm behavior,
however, are negligible when applied to De Jong's test suite using an initial population
of 50 samples. This suggests that genetic algorithm behavior is robust with respect to
slight variations of the initial population, which is desirable. Problems for which X or f
is highly complex, or only a small initial population is possible, may benefit from stratified

initialization.
5.4.2 Sequentiality and Deletion

Genetic algorithms adapt their sampling distributions based on information acquired during
the search. Most commonly, the sampling distributions {Pcy1} are sampled N times before
they are updated, where N is the size of the population. In sequential or steady-state
variants, the sampling distributions are updated more frequently, such as after each sample.
This makes it possible to exploit informnation sooner after it is acquired. The portion of the
population that is replaced prior to updating the sampling distributions is described by the
generation gap.

Increased sequentiality results in increased selection noise or variance compared to the
use of generational replacement and the use of sampling variance reduction techniques, such
as SUS selection (Baker, 1987). Baker’s “Stochastic Universal Sampling” technique (Baker,

1987). Sampling variance reduction techniques work by establishing codependencies among
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the realizations of R;. The more samples there are to be obtained from Ry, the more effective
the sampling variance reduction technique will be. Selection variance is increased with the
degree of sequentiality because fewer samples from Ry are obtained at a time. Some of these
assertions are supported in the literature. It has been concluded based on the use of uniform
or random deletion that the potential advantages of overlapping populations are dominated
by the negative effects of genetic drift or allele loss (De Jong, 1975; De Jong & Sarma, 1993).
In (De Jong & Sarma, 1993), it is concluded that the higher variance associated with smaller
generation gaps leads to greater variation of actual growth curves of individuals on a single
genetic algorithm run, and more genetic drift or allele loss.

Aside from the negative effects of increased selection noise, the performance of sequen-
tial genetic algorithms is predominately determined by the deletion method. Counsider the
following strategies for removing samples from the current population to allow for the inser-
tion of new samples. Best-in-first-out (BIFO) deletion, in which the best observed sample
in the population is the first removed, would clearly result in a counterproductive influence
on behavior. Conversely, worst-in-first-ont (WIFO) deletion exploits observations very ag-
gressively to concentrate samples in the highest performance regions encountered. Finally,
last-in-first-out (LIFO) deletion would degenerate into a non-uniform random search with a
very weak adaptive element, which is the last sample. Only WIFO deletion is in common
use.

In (De Jong & Sarma, 1993), the effects of the generation gap on performance are investi-
gated. It is concluded that the growth curves of genetic algorithm selection are independent
of the generation gap, and there is no compounding effect (De Jong & Sarma, 1993). These
conclusions are based on the use of uniform deletion, the comparison of the ideal growth
curves for generational genetic algorithns and steady-state genetic algorithms with uniform
deletion, which are presented in (Syswerda, 1991), and on mathematical analysis. Uni-
form deletion, however, is not an aggressive deletion method. Furthermore, it has been

shown that steady-state genetic algorithmns with uniform deletion are not actually identical
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Figure 7: The ideal behavior of steady-state proportional selection with FIFO deletion,
applied to the clumped population distribution: left) the average proportion of individuals
of different fitnesses in the population, right) the average population fitness.
to generational genetic algorithins (Peck, 1993). Conversely, advantages can be accrued from
sequentiality. These advantages, illustrated by the use of first-in-first-out (FIFO) deletion
applied to a sequential genetic algorithm, may be seen by comparing Figures 2 and 7.
Many methods for deletion have been proposed for use in genetic algorithms (Syswerda,
1991). These methods may be distinguished by whether the deletion strategy makes use of
observed sample evaluations. Methods that do not use fitness evaluations, such as uniform
and FIFO deletion, are preferred when the objective function is evaluated with noise since
they will not result in a population biased by samples evaluated with favorable noise3. Con-
versely, those methods that use fitness information, can have more aggressive exploitation,

but they are not suitable for use in the presence of noise. To avoid premature convergence,

however, care must be taken to ensure that Theorem 1 is not violated.

6 Convergence Properties

In this section, the convergence properties of genetic algorithins will be considered. First, a
property of genetic algorithms that makes global convergence proofs difficult, if not impossi-

ble, will be discussed. Subsequently, a simplistic remedy will then be provided. This remedy

3The effects of noise on genetic algorithms are carefully examined in (Peck, 1993, §7.2).

44



will be accompanied by proofs of convergence to global optima.

6.1 Why Genetic Algorithms may not Converge

While genetic algorithms satisfy Zhigljavsky’s requirements on the global sampling compo-
nents, they do not satisfy the requirements on the local sampling components. As discussed
previously, the sampling distributions of the recombination operators are constrained locally
by the similarities of the two parent samples. However, the parents are chosen by a global
sampling component. Therefore, the two parents may not be very similar. As a result, the
recombination sampling distributions may not be adequately constrained or localized for
convergence.

The dependence of the lacal sampling distributions on two samples can have undesirable
consequences, such as convergence to sub-optima and divergent behavior. To illustrate these

effects, consider the following function with the feasible space X =z : 2 € [0,1):
4 2
F6q(z) = - (.'z;8 + - 1) + (:1:8 +x - 1) + . (51)

This function is illustrated in Figure 8 for values of « equal to 0.22 and 0.23, respectively.
This function has an optimum at approximately 0.96 with a narrow peak and a sub-optimal
local maximum at approximately 0.35 with a broad peak. This function was designed such
that a recombination event between samples from each peak will result in a disproportionate
number of realizations in the larger, sub-optimal peak, and a recombination event between
samples from the same peak will likely result in realizations within the same peak.

If the breadth of the sampling distributions Qi is dependent on the distance between
the parents, then it is expected that a sampling distribution tug-of-war will ensue between
the large, sub-optimal mass and the smaller, higher performance mass. Selection will always
favor the samples within the optimal peak. Thus, if recombination always resulted in a
realization occurring on the peak of the parent sample around which Q. is centered, then
selection would concentrate the population on the optimmal peak. In this manner, samples

may be stolen by the optimal peak from the sub-optimal peak. However, samples within the
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Figure 8: An illustration of F6G in the feasible space X =z :z € [0,1) for & = 0.22,0.23.

sub-optimal peak will also be selected with positive probability. Due to the nature of F'6,
realizations of Qx centered at a sample within the optimal peak will often be obtained on
the sub-optimal peak when the other parent sample is from the sub-optimal peak. If such
a realization is then recombined with another sample from the sub-optimal peak, then the
resulting sample will likely also be on the sub-optimal peak. In this manner, samples may be
stolen from the optimal peak by the sub-optimal peak. Loosely speaking, if the rate at which
samples are stolen from one peak to the other is exactly balanced by the other peak, then a
steady state distribution or eigen-measure will occur. This situation would be unstable since
a perturbation in the distribution will favor one peak or the other, which would be further
reinforced by selection.

To test the behavior of the genetic algorithm on this function, one of the three basic
recombination operators proposed in (Peck, 1993) was used. The recombination operator is

applied to each dimension independently. The basic form of its density is
1 x -2z 1 x =z
o) = i (E=ED) 4 L ()Y (52)
2w w 2w w

where () is an arbitrary symmetric density centered at zero, w = klz’ = 2", and K is
a control parameter. Densities of this form are constructed directly from the candidate
solutions, are centered around each parent, and the search breadth is proportional to the

distance between the parents. The concentration of the density around the parents can be
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Figure 9: The sampling distribution of the triangular recombination operator with a base of
width 1.0.

controlled by varying x. In (Peck, 1993), ¢(x) is set to the Gaussian density, the triangular
or roof density, and the uniform density. In this case, however, o(x) = t(x), where t(z) is
the triangular density with zero mean and a base width of & = 1.0. A realization, r, of t(z)

may be obtained from a realization, &, of a uniform deviate on the range [0,1) according to

L1427 if € <05
L(-1+v2E)  ife
(1—\/2_—'72?) if £ > 0.5.

The visualization of the resulting sampling distribution is provided in Figure 9.

—

(&) =

[

To avoid premature convergence due to inadequate sampling and to reduce the stochastic
effects, a population of 10,000 samples was used. This population was initialized by sampling
a uniform distribution on the unit interval. Figure 10 shows the progression of sampling
distributions for &« = 0.22 and « = 0.23. Tt was found that for values of @ < 0.22 the
sampling distributions will converge to the sub-optimal peak. It was also found that the
sampling distributions will converge to the optimal peak when « > 0.23. Figure 8 reveals
that a small perturbation of v has a very small effect on F6, but Figure 10 clearly indicates

that the effect on the sampling distribution sequence is dramatic. These results confirm
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Figure 10: Sampling distributions generated by FG: left) when v = 0.22, convergence is to
the sub-optimal peak; right) when « = 0.23, convergence is to the optimal peak.

the unstable, tug-of-war behavior of genetic algorithms on this function. More importantly,
however, these results confirm that genetic algorithms can be ezpected to converge to sub-
optima when applied to certain functions, even when the sampling of the objective function
is adequate. Similar divergent behavior of canonical genetic algorithms has been observed

on deceptive functions (Goldberg, 1987).

6.2 Critical Requirements

For Theoremn 2 and its associated corollaries to be applicable, genetic algorithms must be
representable in a form consistent with generational methods. This can be achieved by
setting

Qi dx) = /1 pe(dz")Qu(2', 2", dx),
where p; is described by (17). Thus, the genetic algorithm sampling distributions {Pisr1}

may be expressed according to (16).

If assumption (p) of Section 3.3 were replaced with

p’. the transition probabilities Qu(2’, 2", .) are defined by

Qk(-’”ly ' 4) = /; 1[:GAJL-(-’F’)SIL-(:)]Tk(mlv a”, dz) +

1a(z) /t L)< senTe(x’, 2", dz), (53)
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where T, (z', 2", dz) are transition probabilities,

it would only be necessary to prove that the transition probabilities, Ti(z’ ,x”, dz), weakly

converge to €,/ (dz) for k = oo and for all 2’ € X to satisfy the requirements of Corollary 3.

To prove this, however, would require additional assumptions on the objective function f.
To meet the requirements of Corollary 4, satisfaction of the following assumption would

be sufficient.

r’. the transition probabilities Qi(x', 2", dz) are defined by
Qu(x, 2", dz) = ci(a") ((z = 27)/ Br) pa(d2), (54)

where ¢ is a continuous symmetrical finite density in R",
1 .
1
= z)/Bi) na(d2)

B > 0, Z 3. < 00, ce(r) =
[ el

The novel recombination operator described by (52) may be expressed in the form of (54)

with Bx = a|z’ — 2"|. To verify the satisfaction of this assumption, it must be proved that

(e o}

Z B < oo.

k=1

The reason why this is not generally possible is discussed in subsection 6.1.

6.3 Ensuring Convergence to a Global Optimum

In the previous subsection, the missing links in applying Zhigljavsky’s convergence proofs to
genetic algorithms were revealed. In both cases, the critical requirement is proving that the
distributions Q, weakly converge sufficiently quickly to a probability measure concentrated

at a point.
Rather than proving this property, it is possible to simply redesign the sampling distri-

butions Qx to ensure this property is satisfied. Consider the following assumption:
r’. the transition probabilities Q(z’, ", dz) are defined by

Q' 2", dz) = ex (2o (2 — 2)/ B) pa(dz), (55)
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where ¢ is a continuous sytmetrical finite density in ",

B = min{e|z’ — 2"], %}, (56)
c(z) = -
[ #((z = )/80) pald2)

' #a”,

)

and

o0
" >0, Y % < oo.
k=1

Selecting B« as in (56) allows the continued exploitation of similarities for adaptation and
improved efficiency, and it forces the reduction of local search breadth at a sufficient rate to
prevent diffusion of the sampling distribution away from global optima. To allow for nearly
normal genetic algorithm performance, a conservative v, schedule, which satisfies (r), could
be used.

Using the assumptions in Appendix B, the assumption that the feasible space, X, is a
compact metric space of arbitrary type, and assumptions (p') and (r”) above permit the

following corollaries.

Corollary 6 Let the conditions (¢), (d), (), (h), (i), (3), (o), (4), (t), and (p’) be satisfied.
Furthermore, let (1) be satisfied for the transition probabilities Ti.(a', 2", dz) of (53). Then

the sequence of distributions determnined by (21) weakly converges to €*(dx) for k — oo.
Proof: All of the conditions of Corollary 3 are satisfied. n

Corollary 7 Let the conditions (¢), (h), (i), (5), (1), (t), and (r") be satisfied. Then the

sequence of distributions determined by (21) weakly converges to €*(dz) for k — oo.

Proof: All of the conditions of Corollary 4 are satisfied. [
Corollaries 6 and 7 demonstrate that genetic algorithms can be constructed in a manner
to ensure convergence to a global optimum.
Interestingly, even when very small values of «« where used in (51), a genetic algorithm

using forced local search reduction (FLSR) applied to the distribution in (52) consistently
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converged to the global optimum. FLSR has also been applied to other novel recombination
operators and shown to be highly effective when optimizing the functions in De Jong’s test

rd

suite (Peck, 1993).

7 Conclusions

In this paper, the theory of global random search methods is applied to genetic algorithms,
and genetic algorithms are generalized into a broader class of methods. This broader class
includes those global random search methods with probability transition operators that are
dependent on two globally obtained samples.

A primary tenet of this paper is that the construction and evolution of the sampling
distributions {Py41}, particularly in the context of the phenospace, is the preferred basis
for understanding genetic algorithin behavior. It is the preferred basis because it operates
at the level of abstraction most appropriate for understanding the interplay among the
search of the objective function, the procedural elements, and generating mechanisms of the
genetic algorithm. Accordingly, the genetic algorithm is reformulated in terms of sampling
distributions and generalized in terms of the phenospace. Three heuristics to aid in the
understanding of genetic algorithn design and behavior are also introduced.

The factors affecting these sampling distributions are considered extensively. It is con-
cluded that: there are many advantages to exploiting candidate solution similarities directly,
selection variance can be expected to degrade performance, the best traditional recombina-
tion operators have localized search distributions that are increasingly constrained in breadth
as the distance between the parents decreases, genetic algorithins are robust with respect to
initial populations, and FIFO deletion is more exploitative than generational replacement.

Sufficient conditions for convergence to a global optimum are also established. These
conditions ensure that the transition probabilities, which are otherwise constrained primarily
by the similarities of two globally obtained and possibly dissimilar samples, are adequately

localized. These sufficient conditions for convergence, however, are purchased at the cost of
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one of the most appealing characteristics of genetic algorithms: its totally adaptive nature.
To theoretically ensure weak convergence to a global optimumn, a schedule for constraining
the search breadth of the recombination operator must be supplied.

There are many opportunities for further research related to this paper: deriving the
relationship between high sampling variance and poorer selection performance, reducing se-
lection sampling variance in sequential or steady-state methods, reexamining the population
sizing problem to make the dependencies on the complexity of X and f explicit, weakening
the sufficient conditions for the weak convergence of genetic algorithms to a global optimum,
and developing a fully adaptive method that is provably convergent, but does not depend

on scheduled control of the transition probabilities.

A Weak Convergence

In this appendix, weak convergence is defined. The presentation is adapted from (Billingsley,
1971).

Let X be a separable and complete metric space. Denote the interior, closure, and
boundary of a set S as S°, S, and 38, respectively, where 3S is S~ — 5°. Denote the class
of bounded, continnous real-valued functions on X as C(X). Let the o-algebra generated by
the open sets in X be denoted B, and note that all functions in C(X) are measurable with
respect to B.

Weak convergence is concerned with the nonnegative, completely additive set functions
P on B for which P(X) =1 (i.e., probability measures). A set S whose boundary satisfies
P(3S) = 0 is referred to as a P-continuity set. If P, and P are probability measures on

(X, B), then P, converges weakly to P, denoted P, = P, if

lim / fdP = /t fdp (57)

h—00 J X
for all functions f in C(X) (Billingsley, 1971). The convergence of integrals of functions forms

the basis of this definition of weak convergence. Weak convergence may also be characterized

in terms of the convergence of the measures of sets.
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Theorem 4 These conditions are equivalent:

a. P, = P,
b. limsup, P.(F) < P(F) for all closed F,
c. liminfy P.(G) > P(G) for all open G,

d. limg Py(S) = P(S) for all P-continuity sets S.

Proof. A proof is provided in (Billingsley, 1971, Thm. 2.1).

B

Assumptions

The following list comprises the assumptions used in this paper. These assumptions and the

following commentary are adapted from (Zhigljavsky, 1991, §5.2.1).

d.

£(z) for any x € X and k = 1,2,... are random variables having a zero-
mean distribution Fy.(x,d€) concentrated on a finite interval (—d,d]; and the
random variables &, (1), &, (%2), . . . are mutually independent for any ki, kq, . ..

and zy, 2y, ... from X;
ye(x) = fil®) + &(x) = ¢ > 0 with probability one for all z € X, k=1,2,..
0<ec < file) S My=sup fy(z) SC<ooforallze X, k=1,2,..
the sequence of functions fi(x) converges to f(x) for k = co uniformly in z;
Qr(z,dz) = q(z, x)p(dx),

sup qr(z,2) < Ly < o0

z€V

for all k = 1,2,... where s is a probability measure on (X, B);



f. the random elements xq, ..., xy with a distribution R(dzy,...,dzy) defined on
By = o(X x ... x X) are symmetrically dependent?. That is, for any choice of

distinct positive integers i1,..., iy, the joint distribution of

Xiys«- -1 Xin

depends only on N and is independent of the integers i, ..., ix (Blum, Chernoff,

Rosenblatt & Teicher, 1959);

g. the probability distribution Py(dzy, ..., dzp) on By is described in terms of the

distribution Ry(dzy,...,dzy) through

Puyldzy, ... ,dey) = [1{(dOy) H U (On) ZA(»,,{,,H’TJ) (58)
Iz~

ij=1 i=1

where
@N = {;11~"7ZN1€11"'7£N})
Z = X x[-dd],

H(dGN) = RN(rlzl,...,d;:N) (~1,(i€1) (ZN,fN)

W(Oy) =
Z f(z5) + &)
Az 6 ds) = (F(2) +6) Qe da);

h. the global maximizer z* of f is unique, and there exists € > 0 such that f is

continuous in the set B(z*,¢) = B(e);
i. s is a probability measure on (X, B) such that j(B(e)) > 0 for any € > 0;

j. there exists €y > 0 such that the sets A(e) = {x € X : f(z*) = f(z) < €} are

connected for any £, 0 < € < &y;

1Symmetrically dependent randoin variables are also called interchangeable (Blum, Chernoff, Rosenblatt
& Teicher, 1959) and ezchangeable (Loéve, 1963).



n.

the sequence of probability measures Qx(x,dz) weakly converges to ez(dx), for
any ¢ € X as k — oo, where £,(dz) is the probability measure concentrated at

the point x;

the sequence of probability measures R(k, Ny, x; dz) weakly converges to £;(dz),

forany z € X as k — oo;

for any € > 0 there are § > 0 and a natural kg such that P.(B(g)) > ¢ for all

k > ko;

for any £ > 0 there are § > 0 and a natural ky such that P(k, Ny_; B(e)) 2 ¢

for all k& > ky;
the functions f, for k = 1,2, ... are evaluated without random noise;

the transition probabilities Qr(x,.) are defined by

Qx (.’IT, A) = /1’ 1[zEA,fk(;t)ka(:)]Tk(my dz) + 1A(.’1:) A 1[fk(:)<fk(x)]Tk(-7:7 dz), (59)

where Ti.(, dz) are transition probabilities, weakly converging to g-(dz) for k —

oo and for all z € A;
P (B(z,e)) >0 foralle >0, z € X

the transition probabilities Qi(x,dz) are defined by
Qulx, dz) = ex(x)p ((z = x)/Bk) paldz), (60)

where ¢ is a continuous symmetrical finite density in R,

3 1
B > 0, Z B < o0, cop () =
k=1 /; ¢ ((z = )/ B) pa(dz)

1

felx) = f(x), &(x) = &(x), Qu(r,dz) = Qx,dz) for each k =1,2,.. and

filz) = f(z) for k=1,2,...



A few of Zhigljavsky’s comments regarding these assumptions will now be related.

Condition (a) makes two basic requirements on the evaluation noise: it must be inde-
pendent, and it must be concentrated on a finite interval. The requirement of finiteness is
particularly important. If the evaluation noise at a suboptimal point is positive and very
large, then all subsequent evaluations will occur in its vicinity with large probability. This
holds even if the search was already concentrated at the global maximizer.

The requirement of condition (b) may be easily satisfied by constructing an auxiliary func-
tion fi(z) from fi(x) such that (b) is satisfied. If an a, is known such that P{sup [&(z)] <
ax} is equal or almost equal to one, then a function fi(z) based on fi(x) that can be made
arbitrarily close to max{c,, fi(z) + constant} is presented in (Zhigljavsky, 1991).

The conditions (h), (i), and (j) are natural and non-restrictive (Zhigljavsky, 1991). The
uniqueness requirement of the global maximizer z* is imposed to simplify some formulations.
Zhigljavsky notes that the results presented actually deal with distribution convergence to
a distribution concentrated on the set

M A(e) D {argmax f(z)} (61)
e>0
instead of convergence to e,-(dz). Therefore, the uniqueness requirement can be relaxed,
and convergence can be understood in this sense. Condition (j), when imposed, does require
that the set (61) be connected.

Necessary requirements on the parameters of Procedure 3 are formulated in conditions (e),
(k), and (1). Distributions satisfying these requirements, however, are very easily constructed.

The assumptions formulated in (f), (g), and (s) are not requirements. They are only
auxiliary tools for formulating Lemma 1. In this formulation, Oy is an N-fold sampling of
X and the noise process (i.c., Oy € ZV). The probability of sampling a subregion of zZN
is described by the distribution TI(d®y). The sampling distribution for a particular dz is
described by

N al “ '
(CONCRREE S oy

=

Q(:ﬁdﬂ")a

—



which is analogous to (16) in Procedure 3.

Assumptions (mn) and (n) may be regarded as conditions imposed on the parameters of
Procedure 3. Since these conditions are not constructive, easily verifiable conditions sufficient
for the validity of (m) or (n) are of interest (Zhigljavsky, 1991). The conditions (p), (q), and
(r) represent such sufficient conditions for two widely used forms of transition probabilities.
A realization yx from (59) may be obtained by sampling the distribution Ti(z,.) to get G

and setting

e = { G if filG) 2 fi(x)
T otherwise.

This form of transition probability is suitable only when the functions fi are evaluated with-
out noise. When noise is present, (60) is a natural way of determining transition probabilities
for X ¢ R*. A random realization y in X from the distribution Qi(z,.) in (60) may be
obtained by repeatedly sampling ¢ to obtain a realization ¢, until = + ; € X, then setting
yr = = + (. When X C R", the transition probabilities of Ty(z,.) of (59) may be chosen
using (60).

Zhigljavsky finally observes that condition (q) places requirements on both & and P;.
When X C R" and X is of non-zero Lebesgue measure, then (q) means that the Pj-measure

of any non-empty ball in R™ with the center in X is larger than zero and that X has no

appendices®.
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